Buzzer Program
Lets make some sound
In the previous program, we made LED blink every one second. In this program, we will only modify the LED pin to create an audible beep every second.
/*
* Buzzer Program: The program below beeps a buzzer every one second,
* then off for one second, and continuous endlessly. Buzzer is connected to Pin 9
*
* At VEEROBOT, we invest time and resources providing this open source code,
* Please support VEEROBOT and open-source hardware by purchasing products
* from us @ http://veerobot.com
* -----------------------------------------------------------------------------
* You are free to redistribute it and/or modify it under the terms of the GNU
* Lesser General Public License as published by the Free Software Foundation,
* either version 3 of the License, or (at your option) any later version.
*
* This Code is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* See <http://www.gnu.org/licenses/>
*/
int BUZZ = 9; // Buzzer is connected to Pin 9
void setup()
{
// Initialize digital pin as output
pinMode(BUZZ, OUTPUT);
}
// the loop function runs over and over again forever
void loop() {
digitalWrite(BUZZ, HIGH); // turn the LED on (HIGH is the voltage level)
delay(1000); // wait for a second
digitalWrite(BUZZ, LOW); // turn the LED off by making the voltage LOW
delay(1000); // wait for a second
}
The above program might be boring at its best. All it does is beep every one second. We will upgrade our program to create some interesting music.
We will have to map the notes to create our micro:Xbot monophonic music. For that we will create a pitches.h
file.
/*
* pitches.h : A configuration file to map pinouts in micro:Xbot
*
* At VEEROBOT, we invest time and resources providing this open source code,
* Please support VEEROBOT and open-source hardware by purchasing products
* from us @ http://veerobot.com
* -----------------------------------------------------------------------------
* You are free to redistribute it and/or modify it under the terms of the GNU
* Lesser General Public License as published by the Free Software Foundation,
* either version 3 of the License, or (at your option) any later version.
*
* This Code is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* See <http://www.gnu.org/licenses/>
*/
#ifndef _PITCHES_H
#define _PITCHES_H
#define NOTE_B0 31
#define NOTE_C1 33
#define NOTE_CS1 35
#define NOTE_D1 37
#define NOTE_DS1 39
#define NOTE_E1 41
#define NOTE_F1 44
#define NOTE_FS1 46
#define NOTE_G1 49
#define NOTE_GS1 52
#define NOTE_A1 55
#define NOTE_AS1 58
#define NOTE_B1 62
#define NOTE_C2 65
#define NOTE_CS2 69
#define NOTE_D2 73
#define NOTE_DS2 78
#define NOTE_E2 82
#define NOTE_F2 87
#define NOTE_FS2 93
#define NOTE_G2 98
#define NOTE_GS2 104
#define NOTE_A2 110
#define NOTE_AS2 117
#define NOTE_B2 123
#define NOTE_C3 131
#define NOTE_CS3 139
#define NOTE_D3 147
#define NOTE_DS3 156
#define NOTE_E3 165
#define NOTE_F3 175
#define NOTE_FS3 185
#define NOTE_G3 196
#define NOTE_GS3 208
#define NOTE_A3 220
#define NOTE_AS3 233
#define NOTE_B3 247
#define NOTE_C4 262
#define NOTE_CS4 277
#define NOTE_D4 294
#define NOTE_DS4 311
#define NOTE_E4 330
#define NOTE_F4 349
#define NOTE_FS4 370
#define NOTE_G4 392
#define NOTE_GS4 415
#define NOTE_A4 440
#define NOTE_AS4 466
#define NOTE_B4 494
#define NOTE_C5 523
#define NOTE_CS5 554
#define NOTE_D5 587
#define NOTE_DS5 622
#define NOTE_E5 659
#define NOTE_F5 698
#define NOTE_FS5 740
#define NOTE_G5 784
#define NOTE_GS5 831
#define NOTE_A5 880
#define NOTE_AS5 932
#define NOTE_B5 988
#define NOTE_C6 1047
#define NOTE_CS6 1109
#define NOTE_D6 1175
#define NOTE_DS6 1245
#define NOTE_E6 1319
#define NOTE_F6 1397
#define NOTE_FS6 1480
#define NOTE_G6 1568
#define NOTE_GS6 1661
#define NOTE_A6 1760
#define NOTE_AS6 1865
#define NOTE_B6 1976
#define NOTE_C7 2093
#define NOTE_CS7 2217
#define NOTE_D7 2349
#define NOTE_DS7 2489
#define NOTE_E7 2637
#define NOTE_F7 2794
#define NOTE_FS7 2960
#define NOTE_G7 3136
#define NOTE_GS7 3322
#define NOTE_A7 3520
#define NOTE_AS7 3729
#define NOTE_B7 3951
#define NOTE_C8 4186
#define NOTE_CS8 4435
#define NOTE_D8 4699
#define NOTE_DS8 4978
#define REST 0
#endif // _PITCHES_H
Now that we have the pitches for our buzzer, we will modify our buzzer program and create some music.
/*
* Buzzer Program: The program below beeps a buzzer every one second,
* then off for one second, and continuous endlessly. Buzzer is connected to Pin 9
*
* At VEEROBOT, we invest time and resources providing this open source code,
* Please support VEEROBOT and open-source hardware by purchasing products
* from us @ http://veerobot.com
* -----------------------------------------------------------------------------
* You are free to redistribute it and/or modify it under the terms of the GNU
* Lesser General Public License as published by the Free Software Foundation,
* either version 3 of the License, or (at your option) any later version.
*
* This Code is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* See <http://www.gnu.org/licenses/>
*/
#include "config.h"
#include "pitches.h"
// change this to make the song slower or faster
int tempo = 180;
// notes of the moledy followed by the duration.
// a 4 means a quarter note, 8 an eighteenth , 16 sixteenth, so on
// !!negative numbers are used to represent dotted notes,
// so -4 means a dotted quarter note, that is, a quarter plus an eighteenth!!
int melody[] = {
NOTE_E5, 8, NOTE_D5, 8, NOTE_FS4, 4, NOTE_GS4, 4,
NOTE_CS5, 8, NOTE_B4, 8, NOTE_D4, 4, NOTE_E4, 4,
NOTE_B4, 8, NOTE_A4, 8, NOTE_CS4, 4, NOTE_E4, 4,
NOTE_A4, 2,
};
// sizeof gives the number of bytes, each int value is composed of two bytes (16 bits)
// there are two values per note (pitch and duration), so for each note there are four bytes
int notes = sizeof(melody) / sizeof(melody[0]) / 2;
// this calculates the duration of a whole note in ms
int wholenote = (60000 * 4) / tempo;
int divider = 0, noteDuration = 0;
void setup() {
// iterate over the notes of the melody.
// Remember, the array is twice the number of notes (notes + durations)
for (int thisNote = 0; thisNote < notes * 2; thisNote = thisNote + 2) {
// calculates the duration of each note
divider = melody[thisNote + 1];
if (divider > 0) {
// regular note, just proceed
noteDuration = (wholenote) / divider;
} else if (divider < 0) {
// dotted notes are represented with negative durations!!
noteDuration = (wholenote) / abs(divider);
noteDuration *= 1.5; // increases the duration in half for dotted notes
}
// we only play the note for 90% of the duration, leaving 10% as a pause
tone(BUZZ, melody[thisNote], noteDuration * 0.9);
// Wait for the specief duration before playing the next note.
delay(noteDuration);
// stop the waveform generation before the next note.
noTone(BUZZ);
}
}
void loop() {
// no need to repeat the melody.
}
Compile, Upload and listen to music. The above program uses a built-in tone() library to generate tones.
Change melody[] to below code and guess the music. You may also need to change tempo to 200 to make the music run slightly faster.
int melody[] = {
NOTE_E5,8, NOTE_E5,8, REST,8, NOTE_E5,8, REST,8, NOTE_C5,8, NOTE_E5,8, //1
NOTE_G5,4, REST,4, NOTE_G4,8, REST,4,
NOTE_C5,-4, NOTE_G4,8, REST,4, NOTE_E4,-4, // 3
NOTE_A4,4, NOTE_B4,4, NOTE_AS4,8, NOTE_A4,4,
NOTE_G4,-8, NOTE_E5,-8, NOTE_G5,-8, NOTE_A5,4, NOTE_F5,8, NOTE_G5,8,
REST,8, NOTE_E5,4,NOTE_C5,8, NOTE_D5,8, NOTE_B4,-4,
NOTE_C5,-4, NOTE_G4,8, REST,4, NOTE_E4,-4, // repeats from 3
NOTE_A4,4, NOTE_B4,4, NOTE_AS4,8, NOTE_A4,4,
NOTE_G4,-8, NOTE_E5,-8, NOTE_G5,-8, NOTE_A5,4, NOTE_F5,8, NOTE_G5,8,
REST,8, NOTE_E5,4,NOTE_C5,8, NOTE_D5,8, NOTE_B4,-4,
REST,4, NOTE_G5,8, NOTE_FS5,8, NOTE_F5,8, NOTE_DS5,4, NOTE_E5,8,//7
REST,8, NOTE_GS4,8, NOTE_A4,8, NOTE_C4,8, REST,8, NOTE_A4,8, NOTE_C5,8, NOTE_D5,8,
REST,4, NOTE_DS5,4, REST,8, NOTE_D5,-4,
NOTE_C5,2, REST,2,
REST,4, NOTE_G5,8, NOTE_FS5,8, NOTE_F5,8, NOTE_DS5,4, NOTE_E5,8,//repeats from 7
REST,8, NOTE_GS4,8, NOTE_A4,8, NOTE_C4,8, REST,8, NOTE_A4,8, NOTE_C5,8, NOTE_D5,8,
REST,4, NOTE_DS5,4, REST,8, NOTE_D5,-4,
NOTE_C5,2, REST,2,
NOTE_C5,8, NOTE_C5,4, NOTE_C5,8, REST,8, NOTE_C5,8, NOTE_D5,4,//11
NOTE_E5,8, NOTE_C5,4, NOTE_A4,8, NOTE_G4,2,
NOTE_C5,8, NOTE_C5,4, NOTE_C5,8, REST,8, NOTE_C5,8, NOTE_D5,8, NOTE_E5,8,//13
REST,1,
NOTE_C5,8, NOTE_C5,4, NOTE_C5,8, REST,8, NOTE_C5,8, NOTE_D5,4,
NOTE_E5,8, NOTE_C5,4, NOTE_A4,8, NOTE_G4,2,
NOTE_E5,8, NOTE_E5,8, REST,8, NOTE_E5,8, REST,8, NOTE_C5,8, NOTE_E5,4,
NOTE_G5,4, REST,4, NOTE_G4,4, REST,4,
NOTE_C5,-4, NOTE_G4,8, REST,4, NOTE_E4,-4, // 19
NOTE_A4,4, NOTE_B4,4, NOTE_AS4,8, NOTE_A4,4,
NOTE_G4,-8, NOTE_E5,-8, NOTE_G5,-8, NOTE_A5,4, NOTE_F5,8, NOTE_G5,8,
REST,8, NOTE_E5,4, NOTE_C5,8, NOTE_D5,8, NOTE_B4,-4,
NOTE_C5,-4, NOTE_G4,8, REST,4, NOTE_E4,-4, // repeats from 19
NOTE_A4,4, NOTE_B4,4, NOTE_AS4,8, NOTE_A4,4,
NOTE_G4,-8, NOTE_E5,-8, NOTE_G5,-8, NOTE_A5,4, NOTE_F5,8, NOTE_G5,8,
REST,8, NOTE_E5,4, NOTE_C5,8, NOTE_D5,8, NOTE_B4,-4,
NOTE_E5,8, NOTE_C5,4, NOTE_G4,8, REST,4, NOTE_GS4,4,//23
NOTE_A4,8, NOTE_F5,4, NOTE_F5,8, NOTE_A4,2,
NOTE_D5,-8, NOTE_A5,-8, NOTE_A5,-8, NOTE_A5,-8, NOTE_G5,-8, NOTE_F5,-8,
NOTE_E5,8, NOTE_C5,4, NOTE_A4,8, NOTE_G4,2, //26
NOTE_E5,8, NOTE_C5,4, NOTE_G4,8, REST,4, NOTE_GS4,4,
NOTE_A4,8, NOTE_F5,4, NOTE_F5,8, NOTE_A4,2,
NOTE_B4,8, NOTE_F5,4, NOTE_F5,8, NOTE_F5,-8, NOTE_E5,-8, NOTE_D5,-8,
NOTE_C5,8, NOTE_E4,4, NOTE_E4,8, NOTE_C4,2,
NOTE_E5,8, NOTE_C5,4, NOTE_G4,8, REST,4, NOTE_GS4,4,//repeats from 23
NOTE_A4,8, NOTE_F5,4, NOTE_F5,8, NOTE_A4,2,
NOTE_D5,-8, NOTE_A5,-8, NOTE_A5,-8, NOTE_A5,-8, NOTE_G5,-8, NOTE_F5,-8,
NOTE_E5,8, NOTE_C5,4, NOTE_A4,8, NOTE_G4,2, //26
NOTE_E5,8, NOTE_C5,4, NOTE_G4,8, REST,4, NOTE_GS4,4,
NOTE_A4,8, NOTE_F5,4, NOTE_F5,8, NOTE_A4,2,
NOTE_B4,8, NOTE_F5,4, NOTE_F5,8, NOTE_F5,-8, NOTE_E5,-8, NOTE_D5,-8,
NOTE_C5,8, NOTE_E4,4, NOTE_E4,8, NOTE_C4,2,
NOTE_C5,8, NOTE_C5,4, NOTE_C5,8, REST,8, NOTE_C5,8, NOTE_D5,8, NOTE_E5,8,
REST,1,
NOTE_C5,8, NOTE_C5,4, NOTE_C5,8, REST,8, NOTE_C5,8, NOTE_D5,4, //33
NOTE_E5,8, NOTE_C5,4, NOTE_A4,8, NOTE_G4,2,
NOTE_E5,8, NOTE_E5,8, REST,8, NOTE_E5,8, REST,8, NOTE_C5,8, NOTE_E5,4,
NOTE_G5,4, REST,4, NOTE_G4,4, REST,4,
NOTE_E5,8, NOTE_C5,4, NOTE_G4,8, REST,4, NOTE_GS4,4,
NOTE_A4,8, NOTE_F5,4, NOTE_F5,8, NOTE_A4,2,
NOTE_D5,-8, NOTE_A5,-8, NOTE_A5,-8, NOTE_A5,-8, NOTE_G5,-8, NOTE_F5,-8,
NOTE_E5,8, NOTE_C5,4, NOTE_A4,8, NOTE_G4,2, //40
NOTE_E5,8, NOTE_C5,4, NOTE_G4,8, REST,4, NOTE_GS4,4,
NOTE_A4,8, NOTE_F5,4, NOTE_F5,8, NOTE_A4,2,
NOTE_B4,8, NOTE_F5,4, NOTE_F5,8, NOTE_F5,-8, NOTE_E5,-8, NOTE_D5,-8,
NOTE_C5,8, NOTE_E4,4, NOTE_E4,8, NOTE_C4,2,
//game over sound
NOTE_C5,-4, NOTE_G4,-4, NOTE_E4,4, //45
NOTE_A4,-8, NOTE_B4,-8, NOTE_A4,-8, NOTE_GS4,-8, NOTE_AS4,-8, NOTE_GS4,-8,
NOTE_G4,8, NOTE_D4,8, NOTE_E4,-2,
};
Last updated